|
http://www.bioone.org/doi/abs/10.1667/RR3533.1
Radiation Research 165(4):445-451. 2006 doi: http://dx.doi.org/10.1667/RR3533.1
Han-Chun DeFedericis, Helen B. Patrzyc, Michael J. Rajecki, Edwin E. Budzinski, Herbert Iijima, Jean B. Dawidzik, Marianne S. Evans, Kellee F. Greene, and Harold C. Box1
Department of Cellular Stress Biology, Roswell Park Cancer Institute, Buffalo, New York 14263
1Address for correspondence: Department of Cellular Stress Biology, Roswell Park Cancer Institute, Carlton and Elm Sts., Buffalo, NY 14263; harold.box@roswellpark.org
Singlet Oxygen-Induced DNA Damage
Study to Determine if 102 Singlet Oxygen Induces DNA Damage
Abstract
DeFedericis, H-C., Patrzyc, H. B., Rajecki, M. J., Budzinski, E. E., Iijima, H., Dawidzik, J. B., Evans, M. S., Greene, K. F. and Box, H. C. Singlet Oxygen-Induced DNA Damage. Radiat. Res. 165, 445–451 (2006).
Singlet oxygen, hydrogen peroxide, hydroxyl radical and hydrogen peroxide are the reactive oxygen species (ROS) considered most responsible for producing oxidative stress in cells and organisms.
Singlet oxygen interacts preferentially with guanine to produce 8-oxo-7,8-dihydroguanine and spiroiminodihydantoin.
DNA damage due to the latter lesion has not been detected directly in the DNA of cells exposed to singlet oxygen.
________________________________________ |
(Kanofsky, J.R.; Sima, P. (Department of Veterans Affairs Hospital, Hines, IL (USA):
The reaction of ozone with a number of biological molecules was found to produce singlet oxygen in high yield. At pH 7.0, the reaction of ozone with an equimolar amount of biological molecule produced the following singlet oxygen yields (mole of singlet oxygen/mole of ozone): cysteine: 0.49 +/- 0.02; methionine: 1.13 +/- 0.11; reduced glutathione: 0.33 +/- 0.02; albumin: 1.00 +/- 0.05; uric acid: 0.64 +/- 0.09; ascorbic acid: 0.96 +/- 0.007; NADPH: 1.07 +/- 0.07; NADH: 0.95 +/- 0.01. )
( Full Article: 1O2 Singlet Oxygen Production from the Reactions of O3 Ozone with Biological Molecules )
________________________________________ |
In this study, the singlet oxygen-induced lesion was isolated from a short synthetic oligomer after exposure to UVA radiation in the presence of methylene blue. The lesion could be enzymatically excised from the oligomer in the form of a modified dinucleoside monophosphate.
Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), the singlet oxygen lesion was detected in the form of modified dinucleoside monophosphates in double-stranded DNA and in the DNA of HeLa cells exposed to singlet oxygen.
Pentamer containing the singlet oxygen-induced lesion and an isotopic label was synthesized as an internal standard for quantifying the lesion and served as well as for correcting for losses of product during sample preparation.
Received: September 1, 2005; Accepted: December 16, 2005
REFERENCES
Ravanat, J-L. and J. Cadet. Reaction of singlet oxygen with 2′-deoxyguanosine and DNA. Isolation and characterization of the main oxidation products. Chem. Res. Toxicol 8:379–388.1995. CrossRef, PubMed
Cadet, J., T. Douki, J-P. Pouget, and J-L. Ravanat. Singlet oxygen DNA products: Formation and measurement. Methods Enzymol 319:143–145.2000. CrossRef, PubMed
Bucho, G. W., J. R. Wagner, J. Cadet, S. Raoul, and M. Weinfeld. Methylene blue-mediated photooxidation of 7,8-dihydro-8-oxo-2′-deoxyguanosine. Biochim. Biophys 126:17–24.1995.
Adam, W., M. A. Arnold, M. Grune, W. M. Nau, U. Pischel, and C. R. Saha-Moller.Spiroiminodihydantoin is a major product in the photooxidation of 2′-deoxyguanosine by the triplet states and oxyl radicals generated from hydroxyacetophenone photolysis and dioxetane thermolysis. Org. Lett 4:537–540.2002. CrossRef, PubMed
Burrows, C. J., J. G. Muller, O. Kornyushyna, W. Luo, V. Duarte, M. D. Leipold, and S. S. David.Structure and potential mutagenicity of new hydantoin products from guanosine and 8-oxo-7,8-dihydroguanine oxidation by transition metals. Environ. Health Perspect 110:713–717.2002.PubMed, CSA
Luo, W., J. G. Muller, E. M. Rachlin, and C. J. Burrows. Characterization of spiroiminodihydantoin as a product of one-electron oxidation of 8-oxo-7,8-dihydroguanosine. Org. Lett 2:613–616.2000. CrossRef, PubMed
Hazva, T. K., J. G. Muller, R. C. Manuel, C. J. Burrows, S. R. Lloyd, and S. Mitra. Repair of hydantoins, one electron oxidation products of 8-oxo-guanine by DNA glycosylases ofEscherichia coli. Nucleic Acids Res 29:1967–1974.2001. CrossRef, PubMed, CSA
McCallum, J. E B., C. Y. Kuniyoshi, and C. S. Foote. Characterization of 5-hydroxy-8-oxo-7,8-dihydroguanosine in the photosensitized oxidation of 8-oxo-7,8-dihdroguanosine and its rearrangement to spiroiminodihydantoin. J. Am. Chem. Soc 126:16777–16782.2004. CrossRef,PubMed, CSA
Cadet, J., T. Douki, D. Gasparutto, and J-L. Ravanat. Oxidative damage to DNA: formation, measurement and biochemical features. Mutat. Res 531:5–23.2003. PubMed, CSA
Leipold, M. D., J. G. Muller, C. J. Burrows, and S. S. David. Removal of hydantoin products of 8-oxoguanine oxidation by the Escherichia coli DNA repair enzyme, FPG. Biochemistry 39:14984–14992.2000. CrossRef, PubMed, CSA
Leipold, M. D., H. Workman, J. G. Muller, C. J. Burrows, and S. S. David. Recognition and removal of oxidized guanines in duplex DNA by the base excision repair enzymes hOGG1, yOGG1, and yOGG2. Biochemistry 42:11373–11381.2003. CrossRef, PubMed, CSA
Schulz, I., H-C. Mahler, S. Boiteux, and B. Epe. Oxidative DNA base damage induced by singlet oxygen and photosensitization: recognition by repair endonucleases and mutagenicity. Mutat. Res 46:145–156.2000.
Ravanat, J-L., S. Sauvaigo, S. Caillat, G. R. Martinez, M. H G. Medeiros, P. D. Mascio, A. Favier, and J. Cadet. Singlet oxygen-mediated damage to cellular DNA determined by the comet assay associated with DNA repair enzymes. Biol. Chem 385:17–20.2004. CrossRef, PubMed
Hailer, M. K., P. G. Slade, B. D. Martin, T. A. Rosenquist, and K. E. Sugdem. Recognition of the oxidized lesions spiroimimodihydantoin and guanidinohydantoin in DNA by the mammalian base excision repair glycosylases NEIL1 and NEIL2. DNA Repair 4:41–50.2005. CrossRef, PubMed
Ravanat, J-L., T. Douki, and J. Cadet. Direct and indirect effects of UV radiation on DNA and its components. Photochem. Photobiol 63:88–102.2001. CrossRef
Henderson, P. T., J. C. Delancy, J. G. Muller, W. L. Neeley, S. R. Tannenbaum, C. J. Burrows, and J. M. Essigmann. The hydantoin lesions formed from oxidation of 7,8-dihydro-8-oxoguanine are potent sources of replication errorsin vivo. Biochemistry 42:9257–9262.2003. CrossRef, PubMed, CSA
Budzinski, E. E., J. D. Dawidzik, J. C. Wallace, H. G. Freund, and H. C. Box. The radiation chemistry of d(CpGpTpA) in presence of oxygen. Radiat. Res 142:107–109.1995. CrossRef,PubMed, CSA
Vile, G. P. and R. M. Tyrell. UVA radiation-induced oxidative damage to lipids and proteins in vitroand in human skin fibroblasts is dependent on iron and singlet oxygen. Free Radic. Biol. Med 18:721–730.1995. CrossRef, PubMed, CSA
Merkel, P. B., R. Nilsson, and D. R. Kearns. Deuterium effects on singlet oxygen lifetimes in solutions. A new test of singlet oxygen reactions. J. Am. Chem. Soc 94:1030–1031.1972.CrossRef
Ye, Y., J. G. Muller, W. Luo, C. L. Mayne, A. J. Shallop, R. A. Jones, and C. J. Burrows. Formation of 13C-, 15N- and 18O-labeled guanidinohydantoin from guanosine oxidation with singlet oxygen, implications for structure and mechanism. J. Am. Chem. Soc 125:13926–13927.2003. CrossRef,PubMed, CSA
Yang, J-l, L-C. Wang, C-Y. Chang, and T-Y. Liu. Singlet oxygen is the major species participating in the induction of DNA strand breakage and 8-hydroxydeoxyguanosine adduct by lead acetate.Environ. Mol. Mutagen 33:194–201.1999. CrossRef, PubMed, CSA
Huang, X., J. Powell, L. A. Mooney, and K. Frenkel. Importance of complete digestion in minimizing variability of 8-oxo-dG analyses. Free Radic. Biol. Med 31:1341–1351.2001. CrossRef, PubMed, CSA
________________________________________ |
http://www.bioone.org/doi/abs/10.1667/RR3533.1
|